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| ntroduction

o Classical/neura synthesis of control systems
Prior knowledge
Adaptive control and artificial neural networks

e Adaptivecritics
Learninreal time
Cope with noise
Cope with many variables
Plan over time in acomplex way

e Adaptation takes place during every time interval:

Action network takes immediate control action

Critic network estimates projected cost



M otivation

Provide full envelope control

Multiphase learning:
Pre-training phase, motivated by corresponding linear controller
On-line training phase, during simulations or testing

On-line training accounts for:
Differences between actual and assumed dynamic models
Nonlinear effects not captured in linearizations

Potential applications:

Incorporate pilot's knowledge into controller a-priori
Uninhabited air vehicles control

Aerobatic flight control
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Aircraft Control Design Approach
~
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Linear Control Design

L_inearizations:

X(t) =f[x(t), u(t). p(t)

I

Dx(t) = FDx(t) + GDu(t)

I

iDX (1) =FLDx(t)+ G Duy (t)
1o (t) =FpDx p (t)+ G pDup (1)

Linear control design:

e Longitudinal
o Lateral-directional
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Linear Proportional-Integral Controller

Closed-loop stahility:  x(t)® x., u(t)® u., ¥({t)® 0
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Omitting D's, for simplicity:
y(t)=ys(t)- ye, @t)=u(t)- ue,..., y. = desired output, (x_,u_) = Set point.



Ye

+

Proportional-Integral Neural Network Controller
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Algebraic Neural Network Pre-training Phase

Feedback:
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Comparison of Neural Network and Linear Controllers
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Adaptive Critic Implementation:

Action Network On-lineTr

aining

Train action network, at timet, holding the critic parameters fixed
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[Balakrishnan and Biega, 1996]



Adaptive Critic Implementation:
Critic Network On-line Training

Train critic network, at time t, holding the action parameters fixed
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[Balakrishnan and Biega, 1996]



On-line Neural Network Training Goal

o Given atarget, t(p), for the network output, z(p):

5 i-po network input
min E © minﬂt(p)- z(p) } |
w w t E © network performane

with network parameters, w, provided by the initialization phase.

Scaling effect: W v
P 45@_> Z

5004




Comparison of Neural Network Training Algorithms

Technique Speed | Implement. Memory Main
Complexity | Requirement | Drawbacks
Backpropagation Poor Low Small * Scaling
* Speed
L evenberg- Excellent Medium Large * Memory
Marquardt » Complexity
Extended Excellent High Large * Memory
Kalman Filter (Highest) » Complexity
Resilient Medium- Low Medium- * Local
Backpropagation |  High Small convergence




Resilient Backpropagation
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Resilient Backpropagation Algorithm Performance

Adaptive critics neural network controller test case: Action Networ k

Mean-squared error performance
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Summary and Conclusions

o Adaptive critic flight controller:

< Algebraic pre-training based on apriori knowledge
< On-line training during simulations (severe conditions)

Improve aircraft control performance under extreme conditions

» Systematic approach for designing nonlinear control systems,
innovative neural network training techniques

« Adaptive critic neural network controller implementation

Future Work:

» Testing: acrobatic maneuvers, severe operating conditions,
coupling and nonlinear effects!



